Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 13(2)2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-33498622

RESUMO

Multidrug-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) is one of the major causes of hospital-acquired and community infections and pose a challenge to the human health care system. Therefore, it is important to find new drugs that show activity against these bacteria, both in monotherapy and in combination with other antimicrobial drugs. Gliotoxin (GT) is a mycotoxin produced by Aspergillus fumigatus and other fungi of the Aspergillus genus. Some evidence suggests that GT shows antimicrobial activity against S. aureus in vitro, albeit its efficacy against multidrug-resistant strains such asMRSA or vancomycin-intermediate S. aureus (VISA) strainsis not known. This work aimedto evaluate the antibiotic efficacy of GT as monotherapy or in combination with other therapeutics against MRSA in vitro and in vivo using a Caenorhabditis elegans infection model.


Assuntos
Antibacterianos/farmacologia , Gliotoxina/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Vancomicina/farmacologia , Animais , Caenorhabditis elegans , Modelos Animais de Doenças , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Relação Dose-Resposta a Droga , Farmacorresistência Bacteriana Múltipla , Quimioterapia Combinada , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Infecções Estafilocócicas/microbiologia
2.
Materials (Basel) ; 12(7)2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30987007

RESUMO

Gliotoxin (GT), a secondary metabolite produced by Aspergillus molds, has been proposed as a potential anti-tumor agent. Here we have developed a nanoparticle approach to enhance delivery of GT in tumor cells and establish a basis for its potential use as therapeutical drug. GT bound to magnetic nanoparticles (MNPs) retained a high anti-tumor activity, correlating with efficient intracellular delivery, which was increased in the presence of glucose. Our results show that the attachment of GT to MNPs by covalent bonding enhances intracellular GT delivery without affecting its biological activity. This finding represents the first step to use this potent anti-tumor agent in the treatment of cancer.

3.
Front Immunol ; 9: 2549, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30459771

RESUMO

Pulmonary aspergillosis is a severe infectious disease caused by some members of the Aspergillus genus, that affects immunocompetent as well as immunocompromised patients. Among the different disease forms, Invasive Aspergillosis is the one causing the highest mortality, mainly, although not exclusively, affecting neutropenic patients. This genus is very well known by humans, since different sectors like pharmaceutical or food industry have taken advantage of the biological activity of some molecules synthetized by the fungus, known as secondary metabolites, including statins, antibiotics, fermentative compounds or colorants among others. However, during infection, in response to a hostile host environment, the fungal secondary metabolism is activated, producing different virulence factors to increase its survival chances. Some of these factors also contribute to fungal dissemination and invasion of adjacent and distant organs. Among the different secondary metabolites produced by Aspergillus spp. Gliotoxin (GT) is the best known and better characterized virulence factor. It is able to generate reactive oxygen species (ROS) due to the disulfide bridge present in its structure. It also presents immunosuppressive activity related with its ability to kill mammalian cells and/or inactivate critical immune signaling pathways like NFkB. In this comprehensive review, we will briefly give an overview of the lung immune response against Aspergillus as a preface to analyse the effect of different secondary metabolites on the host immune response, with a special attention to GT. We will discuss the results reported in the literature on the context of the animal models employed to analyse the role of GT as virulence factor, which is expected to greatly depend on the immune status of the host: why should you hide when nobody is seeking for you? Finally, GT immunosuppressive activity will be related with different human diseases predisposing to invasive aspergillosis in order to have a global view on the potential of GT to be used as a target to treat IA.


Assuntos
Antígenos de Fungos/metabolismo , Aspergillus/fisiologia , Gliotoxina/metabolismo , Imunossupressores/metabolismo , Pulmão/imunologia , Aspergilose Pulmonar/imunologia , Fatores de Virulência/metabolismo , Animais , Aspergillus/patogenicidade , Humanos , Modelos Animais , Terapia de Alvo Molecular , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
4.
Front Microbiol ; 9: 1246, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29946309

RESUMO

Gliotoxin (GT) is a fungal secondary metabolite that has attracted great interest due to its high biological activity since it was discovered by the 1930s. An inactive derivative of this molecule, bis(methylthio)gliotoxin (bmGT), has been proposed as an invasive aspergillosis (IA) biomarker. Nevertheless, studies regarding bmGT production among common opportunistic fungi, including the Aspergillus genus, are scarce and sometimes discordant. As previously reported, bmGT is produced from GT by a methyl-transferase, named as GtmA, as a negative feedback regulatory system of GT production. In order to analyze the potential of bmGT detection to enable identification of infections caused by different members of the Aspergillus genus we have assessed bmGT production within the genus Aspergillus, including A, fumigatus, A. niger, A. nidulans, and A. flavus, and its correlation with gtmA presence. In order to validate the relevance of our in vitro findings, we compared bmGT during in vitro culture with the presence of bmGT in sera of patients from whom the Aspergillus spp. were isolated. Our results indicate that most A. fumigatus isolates produce GT and bmGT both in vitro and in vivo. In contrast, A. niger and A. nidulans were not able to produce GT or bmGT, although A. niger produced bmGT from a exogenous GT source. The frequency and amount of bmGT production in A. terreus and A. flavus isolates in vitro was lower than in A. fumigatus. Our results suggest that this defect could be related to the in vitro culture conditions, since isolates that did not produce bmGT in vitro were able to synthetize it in vivo. In summary, our study indicates that bmGT could be very useful to specifically detect the presence of A. fumigatus, the most prevalent agent causing IA. Concerning A. terreus and A. flavus a higher number of analyses from sera from infected patients will be required to reach a useful conclusion.

5.
Appl Microbiol Biotechnol ; 100(5): 2327-34, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26678078

RESUMO

Early and accurate diagnosis of invasive aspergillosis (IA) is one of the most critical steps needed to efficiently treat the infection and reduce the high mortality rates that can occur. We have previously found that the Aspergillus spp. secondary metabolite, bis(methylthio)gliotoxin (bmGT), can be detected in the serum from patients with possible/probable IA. Thus, it could be used as a diagnosis marker of the infection. However, there is no data available concerning the sensitivity, specificity and performance of bmGT to detect the infection. Here, we have performed a prospective study comparing bmGT detection with galactomannan (GM), the most frequently used and adopted approach for IA diagnosis, in 357 sera from 90 episodes of patients at risk of IA. Our results, involving 79 patients that finally met inclusion criteria, suggest that bmGT presents higher sensitivity and positive predictive value (PPV) than GM and similar specificity and negative predictive value (NPV). Importantly, the combination of GM and bmGT increased the PPV (100 %) and NPV (97.5 %) of the individual biomarkers, demonstrating its potential utility in empirical antifungal treatment guidance and withdrawal. These results indicate that bmGT could be a good biomarker candidate for IA diagnosis and, in combination with GM, could result in highly specific diagnosis of IA and management of patients at risk of infection.


Assuntos
Biomarcadores/sangue , Gliotoxina/análogos & derivados , Aspergilose Pulmonar Invasiva/diagnóstico , Idoso , Idoso de 80 Anos ou mais , Feminino , Galactose/análogos & derivados , Gliotoxina/sangue , Humanos , Masculino , Mananas/sangue , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Prospectivos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...